

Les installations nucléaires de recherche et industrielles diverses

- 1 Les installations de recherche, laboratoires et autres installations en France ____ 328
- 1.1 Les réacteurs de recherche
- 1.2 Les laboratoires et installations industrielles diverses

 - 1.2.2 Les accélérateurs de particules1.2.3 Les installations industrielles
- 1.3 Les installations d'entreposage de matières
- 1.4 Perspectives: les installations en projet

- 2 Les actions de l'ASN dans le champ des installations de recherche: une approche graduée _____ 332
- 2.1 L'approche graduée en fonction des enjeux des installations
- 2.2 Les réexamens périodiques
- 2.3 Le retour d'expérience de Fukushima
- 3 La sûreté nucléaire des installations de recherche et industrielles diverses ____ 333

Les installations nucléaires de recherche et industrielles diverses

es installations nucléaires de recherche ou industrielles sont distinctes des installations nucléaires de base (INB) directement liées à la production d'électricité (réacteurs électronucléaires et installations du cycle du combustible) ou à la gestion des déchets. Elles sont, historiquement et majoritairement, exploitées par le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), mais également par d'autres organismes de recherche (par exemple, l'Institut Laue-Langevin (ILL), l'organisation internationale ITER et le Ganil) ou par des industriels (par exemple, CIS bio international, Stéris et Ionisos, qui exploitent des installations de production d'éléments radiopharmaceutiques ou des irradiateurs industriels).

La variété et l'historique des activités de ces INB expliquent la grande diversité des installations concernées.

1 ____ Les installations de recherche, laboratoires et autres installations en France

1.1 _ Les réacteurs de recherche

Les réacteurs de recherche ont pour objectif de contribuer à la recherche scientifique et technologique et à l'amélioration de l'exploitation des centrales nucléaires. Certaines de ces installations produisent également des radionucléides à usage médical. Ce sont des installations dans lesquelles une réaction en chaîne est créée et entretenue, permettant de produire un flux de neutrons plus ou moins dense utilisé, en premier lieu, à des fins d'expériences scientifiques. Contrairement aux centrales nucléaires, l'énergie produite par les réacteurs de recherche n'est pas récupérée, elle constitue un «sous-produit» évacué par refroidissement. Les quantités de substances radioactives mises en œuvre sont moindres que dans les réacteurs électronucléaires.

Chaque réacteur de recherche constitue une installation spécifique, l'ASN adapte son contrôle à ses risques et inconvénients.

Un panorama des différents types de réacteurs de recherche présents en France et des principaux risques associés est présenté ci-après.

Dans leur dimensionnement, ces réacteurs prennent en compte des accidents de référence de fusion du cœur sous eau (défaillance dans le système de refroidissement) et de fusion du cœur sous air (après dénoyage du cœur ou lors d'une manutention). En outre, ils prennent en compte des accidents spécifiques à certains réacteurs de recherche.

· Les réacteurs à faisceaux de neutrons

Les réacteurs à faisceaux de neutrons sont de type piscine. Ils sont principalement destinés à la recherche fondamentale (physique du solide, physico-chimie moléculaire, biochimie...), en utilisant la méthode de diffraction neutronique pour l'étude de la matière. Les neutrons sont produits dans le réacteur, à différentes gammes d'énergie, et sont captés par des canaux (doigts de gant) dans le réacteur pour être acheminés vers des aires expérimentales.

En France, il existe deux réacteurs à faisceaux de neutrons en fonctionnement: le réacteur Orphée (INB 101) exploité par le CEA à Saclay (puissance nominale limitée à 14 MWth), et le <u>réacteur à haut flux</u> - RHF (INB 67) exploité par l'Institut Max von Laue-Langevin (ILL) à Grenoble (puissance nominale limitée à 58 MWth). Ces réacteurs fonctionnent par cycle de 50 à 100 jours environ. Les principaux enjeux de sûreté sont la maîtrise de la réactivité, du refroidissement et du confinement.

Le CEA arrêtera définitivement le réacteur Orphée fin 2019, qui sera ensuite démantelé.

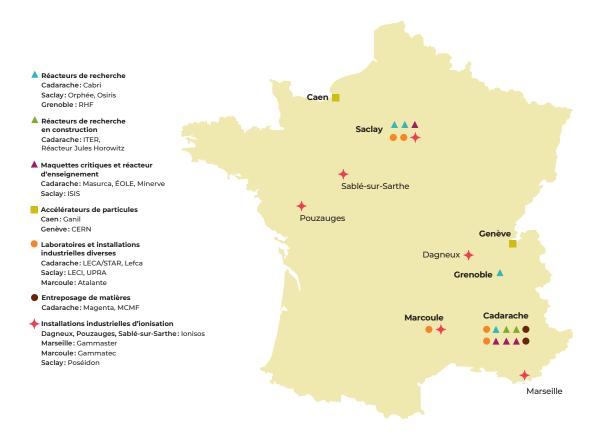
• Les réacteurs «d'essais»

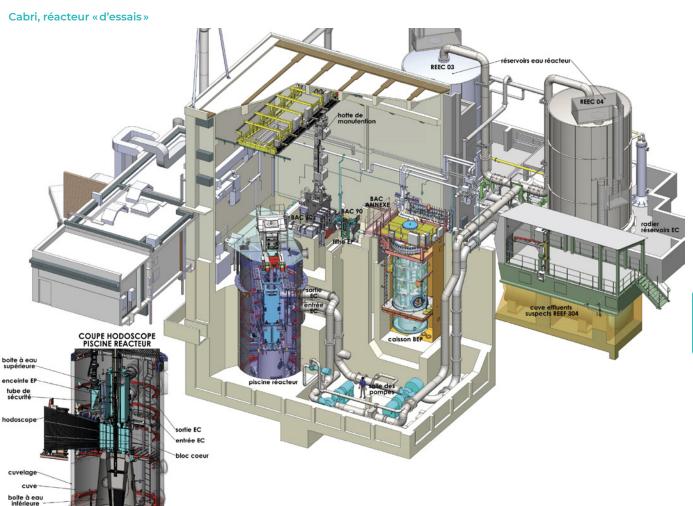
Les réacteurs «d'essais» sont de type piscine. Ils sont destinés à l'étude de situations accidentelles. Ils permettent de reproduire, de façon contrôlée et à petite échelle, certains accidents postulés dans la démonstration de sûreté des réacteurs électronucléaires et de mieux connaître l'évolution de paramètres physiques lors des situations accidentelles.

En France, il existe un réacteur en fonctionnement de type «d'essais», exploité par le CEA à Cadarache, Cabri (INB 24). Le réacteur, d'une puissance limitée à 25 MWth, permet de produire le flux neutronique nécessaire aux expériences. Les enjeux de sûreté sont semblables à ceux des autres réacteurs: la maîtrise de la réactivité du cœur nourricier, du refroidissement pour évacuer la puissance et le confinement des substances radioactives situées dans les crayons de combustibles composant le cœur.

Des modifications de l'installation ont été réalisées pour mettre en œuvre de nouveaux programmes de recherche afin d'étudier le comportement du combustible à haut taux de combustion lors de situations accidentelles d'insertion de réactivité. La divergence du réacteur dans sa nouvelle configuration a été autorisée en 2015. L'ASN a autorisé, le 30 janvier 2018, après d'importants travaux de rénovation, le premier essai expérimental actif de la boucle à eau sous pression de l'installation.

· Les réacteurs d'irradiation


Les réacteurs d'irradiation sont de type piscine. Ils permettent d'étudier les phénomènes physiques liés à l'irradiation de matériaux et de combustibles ainsi que leurs comportements. Les flux neutroniques obtenus par ces installations étant plus puissants que ceux présents dans un réacteur électronucléaire de type REP, les expériences permettent de réaliser des études de vieillissement de matériaux et composants soumis à un flux important de neutrons. Après irradiation, les échantillons font l'objet d'examens destructifs, notamment dans des laboratoires de recherche, afin de caractériser pleinement les effets de l'irradiation. Ils constituent donc un outil important pour la qualification des matériaux soumis à un flux neutronique.


En outre, ces réacteurs de recherche sont des sources de production significatives de certains radionucléides à usage médical.

La puissance de ces réacteurs varie de quelques dizaines à une centaine de MWth. Ces réacteurs fonctionnent par cycle d'environ 20 à 30 jours.

En France, il n'existe plus de réacteurs d'irradiation technologique en fonctionnement: le réacteur Osiris (INB 40), implanté à Saclay, est définitivement arrêté depuis 2015. Le réacteur Jules Horowitz (RJH, INB 172), destiné à le remplacer, est en cours de construction.

Les installations de recherche en France

• Les maquettes critiques

Les maquettes critiques sont des réacteurs de très faible puissance (d'une centaine de watts à quelques kilowatts). De conception simple, ils ont pour objectifs l'approfondissement des connaissances sur les caractéristiques neutroniques de matériaux et l'étude de la neutronique des cœurs des réacteurs pour la validation des outils de calcul scientifique. Les maquettes critiques sont adaptables en fonction du programme expérimental. Les cœurs sont fortement instrumentés afin de pouvoir exploiter les résultats des expériences menées.

En France, les maquettes critiques civiles, exploitées par le CEA à Cadarache, Masurca (INB 39), ÉOLE (INB 42) et Minerve (INB 95), sont définitivement arrêtées, en vue de leur démantèlement. Ces trois installations présentent ainsi aujourd'hui des enjeux limités en matière de maîtrise des risques et inconvénients.

• Les réacteurs dédiés à l'enseignement

Les réacteurs dédiés à l'enseignement sont caractérisés par de faibles puissances (de quelques centaines de watts à quelques centaines de kilowatts), permettant un accès facile à l'installation et une simplicité d'utilisation.

Le réacteur ISIS, situé dans le périmètre du réacteur de recherche Osiris (INB 40), fait partie de cette famille de réacteur. Il est définitivement arrêté, en vue de son démantèlement, depuis mars 2019. Compte tenu de leur faible puissance et de leur taille réduite, ces installations présentent des risques et inconvénients limités.

· Les réacteurs à fusion

Contrairement aux réacteurs de recherche décrits précédemment, qui mettent en œuvre des réactions de fission nucléaire, certaines installations de recherche visent à produire des réactions de fusion nucléaire.

En France, l'installation ITER (INB 174) est un projet international de réacteur à fusion en cours de construction à Cadarache. L'objectif visé par ITER est la démonstration scientifique et technique de la maîtrise de la fusion nucléaire par confinement magnétique d'un plasma deutérium-tritium, lors d'expériences de longue durée avec une puissance significative (500 MW pendant 400 s).

Parmi les principaux enjeux de maîtrise des risques et inconvénients de ce type d'installation, on peut citer en particulier la maîtrise du confinement des matières radioactives (du tritium en particulier), les risques d'exposition aux rayonnements ionisants (forte activation des matériaux sous flux neutronique intense) ou l'évacuation de la puissance résiduelle des compartiments du réacteur (en particulier lors des opérations de maintenance).

1.2 - Les laboratoires et installations industrielles diverses

1.2.1 _ Les laboratoires

Les laboratoires menant des activités de recherche et de développement pour la filière nucléaire contribuent à l'approfondissement des connaissances pour la production électronucléaire, le cycle du combustible ou encore la gestion des déchets. Ils peuvent aussi produire des radionucléides à usage médical.

• Principes et enjeux de sûreté

Les principaux enjeux inhérents à ces installations sont la protection des personnes contre les rayonnements ionisants, la prévention de la dispersion de substances radioactives, la maîtrise des risques d'incendie et la maîtrise de la réaction en chaîne (criticité).

Les principes de conception de ces laboratoires sont similaires. Des zones dédiées, dénommées « cellules blindées », permettent la manipulation et des expérimentations de substances radioactives, à l'aide de moyens de manutention adaptés. Ces cellules blindées sont dimensionnées avec des épaisseurs de murs et de vitres importantes, afin de protéger les opérateurs contre les rayonnements ionisants. Elles permettent également le confinement des matières radioactives, grâce à un système de ventilation et de filtres spécifiques. La réaction en chaîne est maîtrisée au travers de consignes strictes pour la manipulation, l'entreposage et le suivi des matériaux étudiés. Enfin, le risque d'incendie est géré à l'aide de dispositifs techniques (portes coupe-feu, clapets, détecteurs, équipements d'intervention...) et d'une organisation limitant la présence de matières calorifiques. La formation du personnel et une organisation rigoureuse sont, par ailleurs, des facteurs essentiels pour garantir la maîtrise de ces quatre principaux risques.

• Les laboratoires d'essais sur les combustibles et les matériaux

Une partie de ces laboratoires, exploités par le CEA, permet de réaliser diverses expérimentations sur les matériaux ou combustibles irradiés. Certains programmes de recherche ont par exemple pour objectif de permettre un taux de combustion plus élevé des combustibles ou d'améliorer leur sûreté. Certaines de ces installations sont également exploitées pour des activités de préparation et de reconditionnement de combustibles.

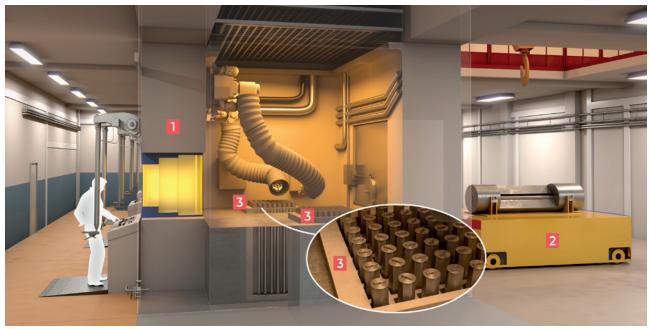
Appartiennent à cette catégorie de laboratoires:

- le laboratoire d'examen des combustibles actifs (LECA), situé à Cadarache et son extension, la station de traitement, d'assainissement et de reconditionnement (STAR), qui constituent l'INB 55;
- le laboratoire d'études et de fabrication de combustibles nucléaires avancés (Lefca, INB 123), situé à Cadarache;
- le laboratoire d'essais sur combustibles irradiés (LECI, INB 50), situé à Saclay.

· Les laboratoires de recherche et de développement

Des activités de R&D sont aussi menées pour l'industrie nucléaire dans des laboratoires sur les nouvelles technologies, notamment concernant le développement de nouveaux combustibles, leur recyclage ou encore la gestion des déchets ultimes.

L'Atelier alpha et le laboratoire pour les analyses de transuraniens et études de retraitement (Atalante, INB 148), situés à Marcoule et exploités par le CEA, assurent un appui technique à Orano Cycle pour optimiser le fonctionnement des usines de La Hague. Des travaux expérimentaux y sont menés pour la qualification du comportement des matrices de verres nucléaires afin de garantir les propriétés de confinement sur le long terme des colis de déchets de haute activité.


• L'Usine de production de radioéléments artificiels (UPRA)

L'Usine de production de radioéléments artificiels (UPRA), située à Saclay et exploitée par CIS bio international, est une installation nucléaire conçue sur les mêmes principes qu'un laboratoire (zones dédiées permettant la manipulation et des expérimentations de substances radioactives, à l'aide de moyens de manutention adaptés), destinée à la fois à mener des activités de recherche et à mettre au point des radionucléides à usage médical. CIS bio international est une filiale du groupe Curium, leader mondial des produits radiopharmaceutiques.

1.2.2 _ Les accélérateurs de particules

Certains accélérateurs de particules sont des installations nucléaires de base. Ces installations utilisent des champs électriques ou magnétiques pour accélérer des particules chargées. Les faisceaux de particules accélérées produisent des champs

Laboratoire d'examen des combustibles actifs - LECA

1: Cellules blindées 2: Matériels roulants 3: Puits

importants de rayonnements ionisants, activant les matériaux en contact, qui émettent alors des rayonnements ionisants, même après l'arrêt des faisceaux. L'exposition aux rayonnements ionisants constitue donc le risque principal dans ce type d'installations.

• Le Ganil

Le Grand accélérateur national d'ions lourds (Ganil, INB 113), situé à Caen, mène des travaux de recherche fondamentale et appliquée, notamment en physique atomique et en physique nucléaire. Cette installation de recherche produit, accélère et distribue des faisceaux d'ions à différents niveaux d'énergie pour étudier la structure de l'atome.

• Le CERN

Située entre la France et la Suisse, l'organisation européenne pour la recherche nucléaire (CERN) est une organisation internationale dont la mission est de mener à bien des programmes de recherche fondamentale à caractère purement scientifique concernant les particules de haute énergie. Le CERN n'exploite pas un seul accélérateur de particules pour étudier la structure de la matière, mais toute une chaîne de dispositifs (appelés parfois injecteurs). Cette chaîne comprend actuellement plusieurs accélérateurs linéaires et circulaires. Du fait de sa nature extraterritoriale, le CERN fait l'objet de modalités de vérifications particulières de la part des autorités de sûreté française et suisse (voir chapitre 6).

1.2.3 _ Les installations industrielles d'ionisation

Les installations industrielles d'ionisation, dénommées irradiateurs, utilisent les rayons gamma émis par des sources scellées de cobalt-60 afin d'irradier des cibles dans des cellules d'irradiation. Ces cellules d'irradiation sont dimensionnées avec des épaisseurs de murs et de vitres importantes, afin de protéger les opérateurs contre les rayonnements ionisants. Les sources scellées sont soit en position basse, entreposées en piscine sous une épaisseur d'eau qui garantit la protection des travailleurs, soit en position haute pour irradier le matériel cible. L'exposition du personnel aux rayonnements ionisants constitue le risque principal dans ces installations.

Les principales applications des irradiateurs sont la stérilisation de dispositifs médicaux, de produits agroalimentaires et de matières premières pharmaceutiques. Les irradiateurs peuvent aussi permettre l'étude de comportement des matériaux sous rayonnements ionisants, notamment pour qualifier des matériaux pour l'industrie nucléaire.

Ces irradiateurs sont utilisés par:

- le groupe Ionisos, qui exploite trois installations situées à Dagneux (INB 68), Pouzauges (INB 146) et Sablé-sur-Sarthe (INB 154);
- le groupe Steris, qui exploite les installations Gammaster (INB 147) et Gammatec (INB 170), à Marseille et à Marcoule;
- le CEA, qui exploite l'irradiateur Poséidon (INB 77) sur le site de Saclay.

1.3 Les installations d'entreposage de matières

Les installations d'entreposage de matières, exploitées par le CEA, sont essentiellement consacrées à la conservation de matières uranifères et plutonifères fissiles non irradiées (ou faiblement irradiées) provenant d'autres installations du CEA. Cette activité permet d'alimenter les laboratoires (Atalante, Lefca...) en fonction des expériences. Elles sont devenues, plus récemment, un exutoire temporaire des matières fissiles présentes jusque-là dans des installations désormais à l'arrêt, telles que les réacteurs de recherche (ÉOLE, Minerve, Osiris, Masurca...).

• Principes et enjeux de sûreté

Les principaux enjeux inhérents à ces installations sont la prévention de la dispersion de substances radioactives et la maîtrise de la réaction en chaîne (criticité).

La sûreté de ces installations repose sur une succession de barrières physiques statiques (murs et portes des locaux et des bâtiments) pour prévenir la dispersion de substances radioactives. Lors de la réalisation d'opérations sur ces substances, le confinement statique est, par ailleurs, assuré par des dispositifs (boîte à gants, cellule blindée) dans lesquels sont réalisées ces opérations. Ce confinement statique est complété par un confinement dynamique constitué, d'une part, d'une cascade

de dépressions entre les locaux présentant des risques de dissémination de substances radioactives et, d'autre part, d'une filtration des effluents gazeux rejetés dans l'environnement. La réaction en chaîne est maîtrisée au travers de consignes strictes pour la manipulation, l'entreposage et le suivi des matériaux entreposés.

· Les installations d'entreposage dédiées

L'installation Magenta (INB 169), mise en service en 2011, exploitée par le CEA sur son site de Cadarache, est dédiée à l'entreposage de matières fissiles non irradiées ainsi qu'à la caractérisation, par des mesures non destructives, des matières nucléaires réceptionnées. Elle remplace notamment le Magasin central des matières fissiles (MCMF, INB 53), définitivement arrêté fin 2017 et vide.

· Les locaux d'entreposage de matières dans les INB

D'autres locaux d'entreposage de matières radioactives, situés au sein d'une INB, sont autorisés à entreposer des matières radioactives sur site, mais dans des quantités bien inférieures à celles entreposées dans Magenta. C'est le cas par exemple de l'INB 55, dénommée STAR, qui entrepose des combustibles usés, irradiés à la suite d'un retraitement et/ou d'un conditionnement.

1.4 — Perspectives: les installations en projet

Une grande partie des installations du CEA ont été construites en support au parc nucléaire français, dans les années 60 à 70. Elles sont aujourd'hui vieillissantes, et le CEA peut vouloir les remplacer pour des raisons de sûreté ou pour disposer d'outils plus adaptés à ses besoins de recherche.

Les futurs projets du CEA concernent:

- le laboratoire Mosaïc: le CEA envisage la construction d'un nouveau laboratoire, dénommé Mosaïc, en remplacement du laboratoire LECA. Le CEA a annoncé à l'ASN en 2018 le début des études pour définir les options de sûreté de cette nouvelle installation;
- la maquette critique Zephyr: le CEA envisage la construction d'une nouvelle maquette critique, dénommée Zephyr (Zero Power Experimental PHYsics Reactor) qui incorporerait les fonctionnalités d'ÉOLE et de Minerve ainsi que celles de Masurca, réacteurs expérimentaux définitivement arrêtés. Cette installation vise à réaliser des expérimentations appropriées pour la validation des outils de calcul relatifs à la physique des cœurs pour les réacteurs en service et les projets futurs.

2 ____ Les actions de l'ASN dans le champ des installations de recherche: une approche graduée

2.1 _ L'approche graduée en fonction des enjeux des installations

Le régime des INB s'applique à plus d'une centaine d'installations en France. Ce régime concerne des installations diverses présentant des enjeux de sûreté nucléaire, de radioprotection et de protection de l'environnement très différents: réacteurs nucléaires de recherche ou électronucléaires, entreposage ou stockage de déchets radioactifs, usines de fabrication ou de traitement de combustibles, laboratoires, installations industrielles d'ionisation...

Les principes de sûreté appliqués aux installations nucléaires de recherche ou industrielles sont similaires à ceux adoptés pour les réacteurs électronucléaires et les installations du cycle du combustible, tout en tenant compte de leurs spécificités en matière de risques et d'inconvénients. L'ASN a mis en œuvre une approche proportionnée à l'importance des risques ou inconvénients présentés par l'installation. À cet égard, l'ASN a réparti les installations qu'elle contrôle en trois catégories, de 1 à 3 par ordre décroissant d'importance des risques et inconvénients qu'elles présentent pour les intérêts mentionnés à l'article L. 593-1 du code de l'environnement (<u>décision nº 2015-DC-0523</u> de l'ASN du 29 septembre 2015). Cette classification des INB permet d'adapter le contrôle des installations et ainsi renforcer celui des installations à enjeux importants, en matière d'inspections et de profondeur des instructions menées par l'ASN. À titre d'exemple, les réacteurs de recherche, dénommés RHF et Cabri, sont respectivement classés en catégories 1 et 2, et l'accélérateur de particules, dénommé Ganil, est classé en catégorie 3.

2.2 – Les réexamens périodiques

Le code de l'environnement impose aux exploitants de réaliser, tous les dix ans, un réexamen périodique de leur installation. Ce réexamen périodique permet d'apprécier la situation de l'installation au regard des règles qui lui sont applicables et d'actualiser l'appréciation des risques ou inconvénients en tenant compte notamment de l'état de l'installation, de l'expérience acquise au cours de l'exploitation, de l'évolution des connaissances et des règles applicables aux installations similaires. Ils sont ainsi l'occasion de remise à niveau ou d'améliorations dans des domaines où les exigences de sûreté ont évolué, notamment la résistance au séisme, la protection contre l'incendie et le confinement.

Pour les installations qui n'avaient pas encore fait l'objet d'un premier réexamen, le <u>décret du 2 novembre 2007</u> imposait aux exploitants de remettre, au plus tard en novembre 2017, un premier rapport de réexamen. Ainsi, le CEA a réalisé, pour le 1^{er} novembre 2017, 16 réexamens périodiques et a transmis les rapports de réexamen à l'ASN.

L'ASN a mis en œuvre un mode d'instruction adapté aux enjeux des installations: certaines installations méritent une attention particulière au regard des risques qu'elles présentent; d'autres installations, présentant moins d'enjeux, font l'objet d'inspections et d'instructions dont l'ampleur est adaptée.

L'instruction technique de l'ensemble de ces rapports de réexamen nécessitera plusieurs années compte tenu des spécificités propres à chacune des installations concernées.

L'ASN a poursuivi en 2018 ses inspections sur site, engagées en 2016, consacrées spécifiquement au réexamen périodique des installations. Elle constate que le CEA s'approprie mieux désormais les problématiques liées au réexamen, grâce à la mise en œuvre, sur chaque site, d'une organisation transverse dédiée à ces processus.

L'ASN sera attentive à la bonne réalisation des travaux identifiés dans les réexamens. Pour le CEA, elle constate que plusieurs projets portant sur la rénovation d'installations ou des projets d'installations neuves, indiqués dans les rapports de réexamen, ont par la suite été redéfinis ou abandonnés pour des raisons budgétaires. Dans certains cas, l'ASN peut être amenée à restreindre les conditions d'exploitation, voire à demander l'arrêt de certaines installations.

Le CEA a par ailleurs informé l'ASN qu'il souhaite lisser la charge liée à ces réexamens, au regard de son organisation et de ses moyens, en anticipant la remise de rapport de réexamen de certaines installations dans la prochaine décennie. L'ASN est favorable à cette démarche.

2.3 – Le retour d'expérience de Fukushima

À la suite de l'accident de la centrale nucléaire de Fukushima, l'ASN a lancé une démarche d'évaluation complémentaire de sûreté (ECS) des installations nucléaires. La démarche consiste à évaluer les marges de sûreté dont disposent les installations pour résister à des pertes d'alimentation électrique ou de refroidissement et à des agressions naturelles extrêmes.

L'ASN a prescrit en mai 2011 de procéder à des ECS pour les INB présentant les risques les plus importants au regard de l'accident de Fukushima (lot 1). Pour les INB du CEA (Masurca, Osiris et RJH) et du réacteur de recherche RHF du lot 1, l'ASN a prescrit, en 2012, au vu des conclusions des ECS, la mise en place de dispositions organisationnelles et matérielles adaptées, appelées « noyau dur ». À la fin 2018, l'ASN estime que les travaux ont bien avancé. Elle constate notamment que les travaux d'ampleur sur le réacteur de recherche RHF sont finalisés de manière satisfaisante, avec notamment la construction de nouveaux locaux de gestion de crise robustes, un renforcement de l'étanchéité du bâtiment réacteur en cas d'inondation extrême et l'implantation ou la modification de circuits de sauvegarde permettant de se prémunir des risques liés à la perte de refroidissement.

La démarche des ECS s'est poursuivie pour un deuxième groupe de 22 installations (lot 2) présentant des enjeux de sûreté moins importants. Parmi elles se trouvent l'UPRA, des installations de recherche du CEA (Atalante, Cabri, LECA et Orphée) et ITER. Les moyens de gestion de crise des centres du CEA de Cadarache, de Marcoule et de Saclay ont été examinés dans le cadre des ECS de ce deuxième lot. L'ASN a prescrit en 2015 la réalisation de nouveaux moyens pour la gestion de crise, notamment la construction ou le renforcement de centres de crise « noyau dur » résistant à des conditions climatiques extrêmes. Elle constate que ces projets ont pris du retard sur l'ensemble des centres du CEA, pour des raisons diverses et que les échéances initialement prescrites n'ont pas été respectées. L'ASN souligne que, face aux retards avérés dans la mise en œuvre des nouveaux bâtiments de gestion de crise au niveau des centres de Saclay et de Cadarache, les mesures compensatoires proposées par le CEA devront être rapidement opérationnelles.

Enfin, parmi la trentaine d'autres installations LUDD présentant les enjeux de sûreté les plus faibles (lot 3), l'ASN a prescrit, en 2013, aux installations du CEA (Lefca, LECI, Poséidon, Magenta et STAR), au Ganil et aux irradiateurs du groupe Ionisos et Steris, un calendrier de remise des rapports ECS qui s'étend jusqu'en 2020. Pour ces installations, les ECS seront instruites dans le cadre du réexamen périodique, comme c'est le cas actuellement pour l'irradiateur Gammaster et les irradiateurs du groupe Ionisos.

3 ___ La sûreté nucléaire des installations de recherche et industrielles diverses

Le bilan de l'année 2018, pour chaque installation, est détaillé en introduction de ce rapport par région, et accompagné de l'appréciation de l'ASN. Certains exploitants d'installations de recherche ou industrielle diverses n'exploitent qu'une à trois installations.

Le CEA assure l'exploitation de nombreuses installations, de nature et aux enjeux de sûreté divers ; des réacteurs de recherche et des laboratoires qui contribuent à l'approfondissement des connaissances pour l'industrie nucléaire (centrales nucléaires, cycle du combustible, gestion des déchets) ainsi que des installations d'entreposage.

Le CEA a arrêté définitivement plusieurs installations et se prépare à réaliser ou réalise leur démantèlement; il construit un nouveau réacteur de recherche, qui a vocation à reprendre les activités de plusieurs réacteurs expérimentaux à l'arrêt; il a identifié, dans le cadre des réexamens périodiques, la nécessité de réaliser des travaux dans de nombreuses installations pour poursuivre leur fonctionnement.

L'ASN sera attentive à la bonne réalisation des travaux identifiés dans les réexamens. Elle constate ainsi que le CEA prend parfois des engagements pour chaque dossier, sans être parfois en mesure de s'assurer que les ressources humaines et financières sont bien disponibles. Ceci peut le conduire par la suite à ne pas tenir certains engagements. L'ASN a ainsi constaté des retards dans la mise en œuvre des nouveaux bâtiments de gestion de crise, prenant en compte le retour d'expérience de Fukushima, pour les centres de Saclay et de Cadarache. Les mesures compensatoires proposées par le CEA devront être rapidement opérationnelles. L'ASN reste vigilante sur la tenue des calendriers des engagements du CEA, la complétude des dossiers transmis, la qualité des réponses aux demandes et le respect des prescriptions.

La réglementation prévoit que l'exploitant dispose notamment des compétences techniques pour assurer la maîtrise des activités qu'il exerce. Pour cela, le CEA définit et met en œuvre un système de gestion intégrée (SGI), permettant d'assurer que les exigences relatives à la protection des intérêts sont systématiquement prises en compte dans toute décision concernant ses installations nucléaires. Ce SGI précise les dispositions prises en matière d'organisation et de ressources, en particulier celles retenues pour maîtriser les activités importantes pour la protection des personnes et de l'environnement.

Le contrôle de l'ASN sur le fonctionnement des organisations mises en place par le CEA vise à s'assurer des modalités de mise en œuvre du SGI. L'ASN contrôle aussi l'organisation du CEA pour gérer les ressources nécessaires à la réalisation de ces activités. Elle s'assure que les aspects organisationnels et humains sont bien pris en compte aux différentes étapes de la vie d'une installation (conception, modification, arrêté définitif et démantèlement...). Pour ce faire, l'ASN réalise des inspections dans les installations nucléaires, ou plus ponctuellement dans les services centraux. Elle examine aussi périodiquement une revue de l'ensemble du système de gestion du CEA. La prochaine revue du CEA est prévue en 2019.

L'appréciation globale de l'ASN sur la sûreté nucléaire des installations exploitées par le CEA est également présentée en introduction. Enfin, l'évaluation de la stratégie de démantèlement et de gestion des déchets est présentée dans les chapitres 13 et 14.